top of page
  • Catalysis [CO2 reduction and some other types]

17. Multielectron molecular CO2RR <link

Nature Catalysis under review (2024) | Yun Song, Ruquan Ye*

16. Molecular CO2RR <link

Nature Synthesis ASAP (2024) | Qiang Zhang, Ben Zhong Tang*, William A. Goddard III*, Ruquan Ye*

15. Strain Enhances the Activity of Molecular Electrocatalysts via Carbon Nanotube Supports <link
Nature Catalysis 6, 818-828 (2023) |
 Jianjun Su#, Charles B. Musgrave III#, William A. Goddard III*, Ruquan Ye*

14. Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water <link

Nature Catalysis 6,464-475 (2023) | Junlai Yu#, Libei Huang#, Lili Du*, David Lee Phillips*, Ruquan Ye*, Jia Tian*

13. Tailored self-assembled photocatalytic nanofibers for visible-light driven hydrogen production.<link>

Nature Chemistry 12, 1150–1156 (2020) | Jia Tian, Ruquan Ye, David Lee Phillips, Ian Manners*

12. Accelerating multielectron reduction at CuxO nanograins interfaces with controlled local electric field <link>
Nature Communications 14: 7383 (2023) |
 Weihua Guo#, Minghui Zhu*, Shibo Xi*, Boris I. Yakobson*, Ben Zhong Tang*, Ruquan Ye*

11. Building a stable cationic molecule/electrode interface for highly efficient and durable CO2 reduction at an industrial-relevance current.<link>

Energy & Environmental Science 14, 483-492 (2021) | Jianjun Su, Minghui Zhu*, Ben Zhong Tang, Ruquan Ye*

10. Molecular Engineering of Poly(ionic liquid) for Direct and Continuous Production of Pure Formic Acid from Flue Gas <link

Advanced Materials 2409390 (2024) | Geng Li, Ziyun Wang*, Ruquan Ye* 

9. Ultrathin, Cationic Covalent Organic Nanosheets for Enhanced CO2 Electroreduction to Methanol <link

Advanced Materials 2310037 (2023) | Yun Song, Jia Tian*, Ruquan Ye* 

8. Atomically Thin, Ionic-Covalent Organic Nanosheets for Stable, High-Performance Carbon Dioxide Electroreduction.<link>

Advanced Materials (2022) | Yun Song, Dengtao Yang*, Ben Zhong Tang, Boris I. Yakobson*, Ruquan Ye* 

7. High‐performance hydrogen evolution from MoS2(1–x)Px Solid Solution.<link>

Advanced Materials 28, 1427-1432 (2016). | Ruquan Ye, James M Tour*

6. Backbone engineering of polymeric catalysts for high-performance CO2 reduction in bipolar membrane zero-gap electrolyzer <link

Angewandte Chemie International Edition 202400414 (2024) | Geng Li, Ruquan Ye*

5. Covalently grafting cobalt porphyrin on carbon nanotube for efficient CO2 electroreduction.<link>

Angewandte Chemie International Edition 58, 6595-6599 (2019)  | Minghui Zhu, Ruquan Ye*, Yi-Fan Han*

4. Constructing ionic interfaces for stable electrochemical CO2 reduction 

ACS Nano ASAP <link| Yong Liu, Yun Song, Ruquan Ye*

3. Filling the Gap between Heteroatom Doping and Edge Enrichment of 2D Electrocatalysts for Enhanced Hydrogen Evolution <link

ACS Nano 17 (2) 1287-1297 (2023) | Wenbin Wang,# Yun Song,# Chengxuan Ke,# Guangfu Luo,* Qiyuan He*, Ruquan Ye* 

2. Ultrafast Hole Preservation with Undercoordinated Tungsten for Efcient Solar-to-Chemical Conversion.<link>

ACS Energy Letters 9, 3252-3260 (2024). | Qiushi Hu, Meng Lin*, Ruquan Ye*, Xihan Chen*

1. Elucidating reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine.<link>

ACS Energy Letters 3, 1381-1386 (2018). | Minghui Zhu#, Ruquan Ye#, Karthish Manthiram*

  • Graphene and related [Mostly graphene]

13. Flash healing of laser-induced graphene <link

Nature Communications 15, 2925 (2024) | Le Cheng, Xinge Yu*, Ruquan Ye*

12. Coal as an abundant source of graphene quantum dots. <link>

Nature Communications 4, 2943. (2013)  | Ruquan Ye#, Changsheng Xiang#, James M. Tour*

11. Direct synthesis of ammonia from nitrate on amorphous graphene with near 100% efficiency <link>
Advanced Materials 2211856 (2023) |
 Libei Huang, Jun-Jie Zhang*, Boris I. Yakobson*, Ben Zhong Tang, Yang Ren, Ruquan Ye*

10. Laser-induced graphene. From discovery to translation <link>

Advanced Materials 31, 1803621 (2019) | Ruquan Ye*, Dustin K. James, James M Tour*

9. Laser‐Induced Graphene Formation on Wood. <link>

Advanced Materials 29, 1702211 (2017) | Ruquan Ye#, Yieu Chyan#, James M Tour*

8. Laser-induced graphene.<link>

Accounts of Chemical Research 51, 1609-1620 (2018). | Ruquan Ye, Dustin K. James, James M Tour*

7. Ultrasensitive, fast-responsive, directional airflow sensing by bioinspired suspended graphene fibers <link>

Nano Letters 23 (2) 597-605 (2023) | Libei Huang, Zheng Yan,* Ben Zhong Tang, Ruquan Ye*

6. Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite <link>

Nano Letters (2022) | Xingcan Huang#, Hu Li#, Jiyu Li#, Libei Huang#, Enming Song*, Ruquan Ye*, Xinge Yu*

5. Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask <link 

ACS Nano 14, 12045–12053 (2020) | Libei Huang, Chunlei Zhu*, Ben Zhong Tang*, Ruquan Ye*

4. Graphene at fifteen. <link>

ACS Nano 13 10872-10878 (2019) | Ruquan Ye*, James M. Tour*

3. Laser-induced conversion of Teflon into fluorinated nanodiamonds or fluorinated graphene.<link>

ACS Nano 12, 1083-1088 (2018). | Ruquan Ye#, Xiao Han#, James M Tour*

2. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food <link>

ACS Nano 12, 2176-2183 (2018). | Yieu Chyan#, Ruquan Ye#, Jame M Tour*

1. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene.<link

ACS Nano 9, 9244-9251 (2015). | Ruquan Ye, James M Tour*

bottom of page